organic compounds

 $\mu = 0.31 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.028$

 $0.25 \times 0.20 \times 0.18 \text{ mm}$

9949 measured reflections

2295 independent reflections 1696 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate

Shahzad Sharif,^a M. Nawaz Tahir,^b* Islam Ullah Khan,^a Manan Ayub Salariya^c and Sarfraz Ahmad^c

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cPhar-Pharmagen Ltd, Lahore 54000, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 23 May 2009; accepted 23 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.120; data-to-parameter ratio = 17.0.

In the title compound, $C_7H_9N_3O_3S$, the planes of the 2-amino-1,3-thiazol-4-yl and the methyl ester groups are oriented at a dihedral angle of 67.06 (7)°. In the crystal, inversion dimers linked by pairs of N-H···N hydrogen bonds occur, forming $R_2^2(8)$ ring motifs. The dimers are interlinked by N-H···O hydrogen bonds, resulting in sheets propagating in the *ac* plane.

Related literature

For a related structure, see: Laurent *et al.* (1981). For background to the use of the title compound in organic synthesis, see: Khanna *et al.* (1999). For graph-set notation, see: Bernstein *et al.* (1995);

Experimental

Crystal data $C_7H_9N_3O_3S$ $M_r = 215.23$ Monoclinic, $P2_1/n$

a = 7.8096 (4) Å
b = 8.1994(5)
c = 15.6247 (9)

$\beta = 92.936 \ (2)^{\circ}$
V = 999.20 (10) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.931, T_{\max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.120$ S = 1.032295 reflections 135 parameters H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1^{i}$ $N2-H2B\cdotsN1^{ii}$	0.83 (3) 0.84 (3)	2.28 (2) 2.20 (3)	3.058 (2) 3.024 (2)	156 (2) 166 (3)
6	. 1 . 1 .	1. (!!)	1.1	

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2983).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khanna, J. M., Handa, V. K., Dandala, R. & Aryan, R. C. (1999). US Patent No. 5 869 649.
- Laurent, G., Durant, F. & Evrard, G. (1981). Acta Cryst. B37, 972-974.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1455 [doi:10.1107/S1600536809019643]

(2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate

S. Sharif, M. N. Tahir, I. U. Khan, M. A. Salariya and S. Ahmad

Comment

2-Mercapto-benzothiazolyl-(*Z*)-2-(2-aminothiazol-4-yl)-2-methoxyimino acetate (MAEM) is a standard acylating agent for the preparation of cephalosporins (Khanna *et al.*, 1999). The title compound (I), (Fig 1), is prepared as an intermediate for derivitaziation.

The crystal structure of (II) Ethyl 2-amino- α -(*E*-methoxyimino)-4-thiazoleacetate (Laurent *et al.*, 1981) has been published. (I) differs from (II) due to the methoxy group attached with carbonyl instead of ethoxy moiety.

The title compound is dimerized due to the intermolecular H-bonding of N—H…N type forming $R_2^2(8)$ ring motifs (Bernstein *et al.*, 1995). The dimers are further linked with each other through the intermolecular H-bonding of N—H…O type (Table 1), (Fig. 2). The five membered ring along with NH₂ A (C1/C2/S1/C3/N1/N2), methyl ester group B (O1/C5/O2/C6) and the group C (C4/N3/O3/C7) are planar. The dihedral angles between A/B, A/C and B/C have values of 67.06 (7), 9.21 (16) and 71.67 (11)°, respectively.

Experimental

2-Mercapto-benzothiazolyl-(Z)-2-(2-aminothiazol-4-yl)-2-methoxyimino acetate (0.2 g, 1.4 mmol) was dissolved in methanol (5 ml) and stirred for 1 h at 303 K. Yellow prisms of (I) were obtained through slow evaporation after five days.

Refinement

The coordinates of H-atoms of NH₂ group were refined. Other H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aryl and methyl H, respectively and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and 1.2 for other H atoms.

Figures

Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small spheres of arbitrary radius.

Fig. 2. The partial packing of (I) which shows that molecules form dimers and the dimers are interlinked forming two dimensional polymeric sheets.

(2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate

Crystal data	
C7H9N3O3S	$F_{000} = 448$
$M_r = 215.23$	$D_{\rm x} = 1.431 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2295 reflections
a = 7.8096 (4) Å	$\theta = 2.6 - 27.5^{\circ}$
<i>b</i> = 8.1994 (5) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 15.6247 (9) Å	<i>T</i> = 296 K
$\beta = 92.936 \ (2)^{\circ}$	Prism, yellow
$V = 999.20 (10) \text{ Å}^3$	$0.25\times0.20\times0.18~mm$
Z = 4	

Data collection

Bruker Kappa APEXII CCD diffractometer	2295 independent reflections
Radiation source: fine-focus sealed tube	1696 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 7.50 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 296 K	$\theta_{\min} = 2.6^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -8 \rightarrow 10$
$T_{\min} = 0.931, T_{\max} = 0.945$	$l = -20 \rightarrow 20$
9949 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0635P)^2 + 0.2265P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2295 reflections	$\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$

135 parameters

 $\Delta \rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: ?

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.41857 (6)	0.20584 (8)	0.43460 (3)	0.0599 (2)
01	0.04763 (18)	0.26609 (19)	0.13478 (9)	0.0637 (5)
O2	0.25926 (17)	0.08248 (18)	0.14230 (9)	0.0599 (5)
O3	-0.14991 (17)	-0.0224 (2)	0.17911 (8)	0.0606 (5)
N1	0.11714 (18)	0.0792 (2)	0.41045 (9)	0.0475 (5)
N2	0.2110 (2)	0.0993 (3)	0.55484 (11)	0.0719 (8)
N3	-0.06554 (18)	-0.0011 (2)	0.26002 (9)	0.0482 (5)
C1	0.1775 (2)	0.1176 (2)	0.33140 (11)	0.0419 (5)
C2	0.3342 (2)	0.1859 (3)	0.33191 (12)	0.0519 (6)
C3	0.2315 (2)	0.1199 (3)	0.47114 (12)	0.0483 (6)
C4	0.0712 (2)	0.0836 (2)	0.25360 (11)	0.0412 (5)
C5	0.1219 (2)	0.1552 (2)	0.17005 (11)	0.0452 (6)
C6	0.3165 (3)	0.1371 (4)	0.05994 (15)	0.0826 (10)
C7	-0.3004 (3)	-0.1162 (4)	0.18950 (16)	0.0913 (12)
H2	0.38901	0.21784	0.28319	0.0622*
H2A	0.288 (3)	0.129 (3)	0.5901 (17)	0.0863*
H2B	0.124 (4)	0.053 (3)	0.5734 (17)	0.0863*
H6A	0.24081	0.09504	0.01485	0.1240*
H6B	0.43070	0.09816	0.05256	0.1240*
H6C	0.31566	0.25411	0.05803	0.1240*
H7A	-0.27198	-0.21154	0.22295	0.1370*
H7B	-0.34834	-0.14852	0.13428	0.1370*
H7C	-0.38262	-0.05196	0.21829	0.1370*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0470 (3)	0.0858 (4)	0.0465 (3)	-0.0188 (3)	-0.0024 (2)	0.0058 (3)
01	0.0605 (9)	0.0762 (10)	0.0548 (9)	0.0119 (8)	0.0062 (7)	0.0219 (8)
02	0.0583 (8)	0.0742 (10)	0.0486 (8)	0.0134 (7)	0.0177 (6)	0.0089 (7)

supplementary materials

O3	0.0514 (7)	0.0897 (11)	0.0403 (7)	-0.0193 (7)	-0.0009 (5)	0.0000 (7)
N1	0.0366 (7)	0.0672 (10)	0.0385 (8)	-0.0026 (7)	0.0012 (6)	0.0057 (7)
N2	0.0506 (10)	0.1262 (19)	0.0386 (9)	-0.0213 (11)	-0.0016 (7)	0.0093 (10)
N3	0.0444 (8)	0.0626 (10)	0.0374 (8)	-0.0034 (7)	0.0015 (6)	-0.0006 (7)
C1	0.0397 (8)	0.0468 (10)	0.0392 (9)	0.0019 (7)	0.0019 (7)	0.0054 (8)
C2	0.0480 (10)	0.0666 (12)	0.0410 (9)	-0.0114 (9)	0.0023 (8)	0.0065 (9)
C3	0.0383 (8)	0.0634 (12)	0.0431 (10)	-0.0017 (8)	0.0019 (7)	0.0053 (9)
C4	0.0377 (8)	0.0475 (10)	0.0385 (9)	0.0033 (7)	0.0039 (6)	0.0016 (8)
C5	0.0415 (9)	0.0546 (11)	0.0394 (9)	-0.0019 (8)	0.0010 (7)	0.0015 (8)
C6	0.0799 (16)	0.112 (2)	0.0588 (14)	0.0138 (15)	0.0323 (12)	0.0181 (14)
C7	0.0640 (14)	0.142 (3)	0.0674 (15)	-0.0480 (16)	-0.0010 (12)	-0.0012 (16)

Geometric parameters (Å, °)

1 7109 (19)	N2H2B	0.84(3)
1.7109(19) 1.7442(19)	12 - 112 B	1.246(2)
1.7442 (18)		1.340 (2)
1.198 (2)		1.463 (2)
1.320 (2)	C4—C5	1.503 (2)
1.454 (3)	C2—H2	0.9300
1.4062 (19)	С6—Н6А	0.9600
1.421 (3)	С6—Н6В	0.9600
1.381 (2)	С6—Н6С	0.9600
1.312 (2)	C7—H7A	0.9600
1.336 (3)	С7—Н7В	0.9600
1.282 (2)	С7—Н7С	0.9600
0.83 (3)		
88.83 (9)	O1—C5—O2	125.06 (16)
116.32 (17)	O1—C5—C4	123.60 (15)
108.47 (15)	O2—C5—C4	111.32 (14)
109.73 (15)	S1—C2—H2	125.00
110.53 (14)	C1—C2—H2	125.00
118 (3)	O2—C6—H6A	109.00
122.2 (18)	O2—C6—H6B	109.00
119.5 (17)	O2—C6—H6C	109.00
124.15 (16)	H6A—C6—H6B	109.00
119.64 (14)	Н6А—С6—Н6С	109.00
116.21 (16)	H6B—C6—H6C	109.00
110.60 (14)	O3—C7—H7A	109.00
114.63 (14)	O3—C7—H7B	109.00
121.05 (14)	O3—C7—H7C	109.00
124.33 (17)	H7A—C7—H7B	109.00
118.93 (14)	H7A—C7—H7C	109.00
118.53 (15)	H7B—C7—H7C	109.00
122.49 (15)		
-0.42 (17)	O3—N3—C4—C5	3.3 (2)
0.46 (18)	N1-C1-C2-S1	0.3 (2)
-179.5 (2)	C4—C1—C2—S1	-179.86 (13)
-3.7 (3)	N1—C1—C4—N3	-9.3 (2)
177.57 (17)	N1—C1—C4—C5	168.00 (15)
	1.7109 (19) 1.7442 (18) 1.198 (2) 1.320 (2) 1.454 (3) 1.4062 (19) 1.421 (3) 1.381 (2) 1.312 (2) 1.336 (3) 1.282 (2) 0.83 (3) 88.83 (9) 116.32 (17) 108.47 (15) 109.73 (15) 110.53 (14) 118 (3) 122.2 (18) 119.5 (17) 124.15 (16) 119.64 (14) 116.21 (16) 110.60 (14) 114.63 (14) 121.05 (14) 124.33 (17) 118.93 (14) 118.53 (15) 122.49 (15) -0.42 (17) 0.46 (18) -179.5 (2) -3.7 (3) 177.57 (17)	1.7109 (19)N2-H2B $1.7442 (18)$ $C1-C2$ $1.198 (2)$ $C1-C4$ $1.320 (2)$ $C4-C5$ $1.454 (3)$ $C2-H2$ $1.4062 (19)$ $C6-H6A$ $1.421 (3)$ $C6-H6B$ $1.381 (2)$ $C6-H6C$ $1.312 (2)$ $C7-H7A$ $1.336 (3)$ $C7-H7B$ $1.282 (2)$ $C7-H7C$ $0.83 (3)$ $88.83 (9)$ $01-C5-O2$ $116.32 (17)$ $01-C5-C4$ $108.47 (15)$ $02-C5-C4$ $109.73 (15)$ $S1-C2-H2$ $110.53 (14)$ $C1-C2-H2$ $118 (3)$ $02-C6-H6A$ $122.2 (18)$ $02-C6-H6B$ $19.5 (17)$ $02-C6-H6B$ $19.64 (14)$ $H6A-C6-H6B$ $119.64 (14)$ $H6B-C6-H6C$ $116.21 (16)$ $H6B-C6-H6C$ $116.33 (17)$ $H7A-C7-H7B$ $124.33 (17)$ $H7A-C7-H7B$ $124.33 (17)$ $H7A-C7-H7C$ $122.49 (15)$ $-0.42 (17)$ $-0.42 (17)$ $03-N3-C4-C5$ $0.46 (18)$ $N1-C1-C2-S1$ $-179.5 (2)$ $C4-C1-C2-S1$ $-3.7 (3)$ $N1-C1-C4-N3$ $177.57 (17)$ $N1-C1-C4-C5$

C7—O3—N3—C4 C3—N1—C1—C2 C3—N1—C1—C4 C1—N1—C3—S1 C1—N1—C3—N2	-179.82 (18) 0.0 (2) -179.81 (17) -0.4 (2) 179.6 (2)	C2-C1-C4-N3 C2-C1-C4-C5 N3-C4-C5-O1 N3-C4-C5-O2 C1-C4-C5-O1		170.87 (19) -11.8 (3) 70.4 (2) -110.87 (18) -106.8 (2)
03—N3—C4—C1	-1/9.50 (14)	C1 - C4 - C5 - 02		/1.92 (19)
<i>Hydrogen-bond geometry</i> (A, \circ)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A…O1 ⁱ	0.83 (3)	2.28 (2)	3.058 (2)	156 (2)
N2—H2B…N1 ⁱⁱ	0.84 (3)	2.20 (3)	3.024 (2)	166 (3)
Symmetry codes: (i) <i>x</i> +1/2, - <i>y</i> +1/2, <i>z</i> +1	/2; (ii) $-x, -y, -z+1.$			

Fig. 2